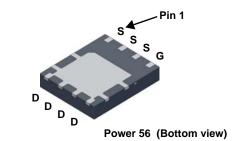
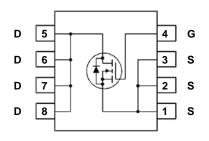


FDMS8680 N-Channel PowerTrench[®] MOSFET 30V, 35A, 7.0m Ω

Features

- Max $r_{DS(on)} = 7.0 m\Omega$ at $V_{GS} = 10V$, $I_D = 14A$
- Max $r_{DS(on)}$ = 11.0m Ω at V_{GS} = 4.5V, I_D = 11.5A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- RoHS Compliant




General Description

The FDMS8680 has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance.

Applications

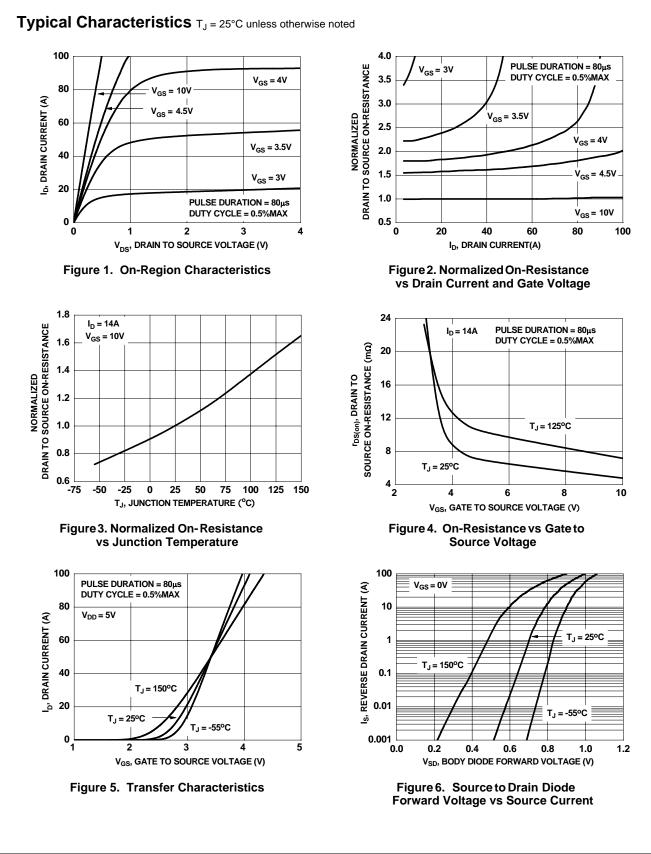
- Low Side for Synchronous Buck to Power Core Processor
- Secondary Side Synchronous Rectifier
- Low Side Switch in POL DC/DC Converter
- Oring FET/ Load Switch

MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Parameter		Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage			30	V				
V _{GS}	Gate to Source Voltage			±20	V				
ID	Drain Current -Continuous (Package limited)	T _C = 25°C		35					
	-Continuous (Silicon limited)	T _C = 25°C		63	•				
	-Continuous	T _A = 25°C	(Note 1a)	14	Α				
	-Pulsed			100					
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	216	mJ				
P _D	Power Dissipation	T _C = 25°C		50	14/				
	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1a)	2.5	W				
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C				

Thermal Characteristics

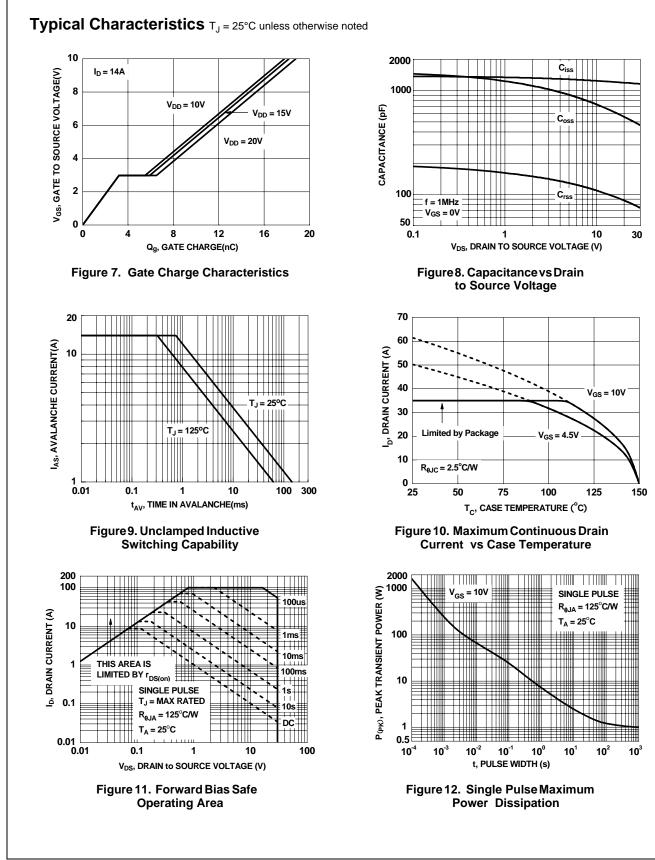
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	2.5	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1	a) 50	C/vv


Package Marking and Ordering Information

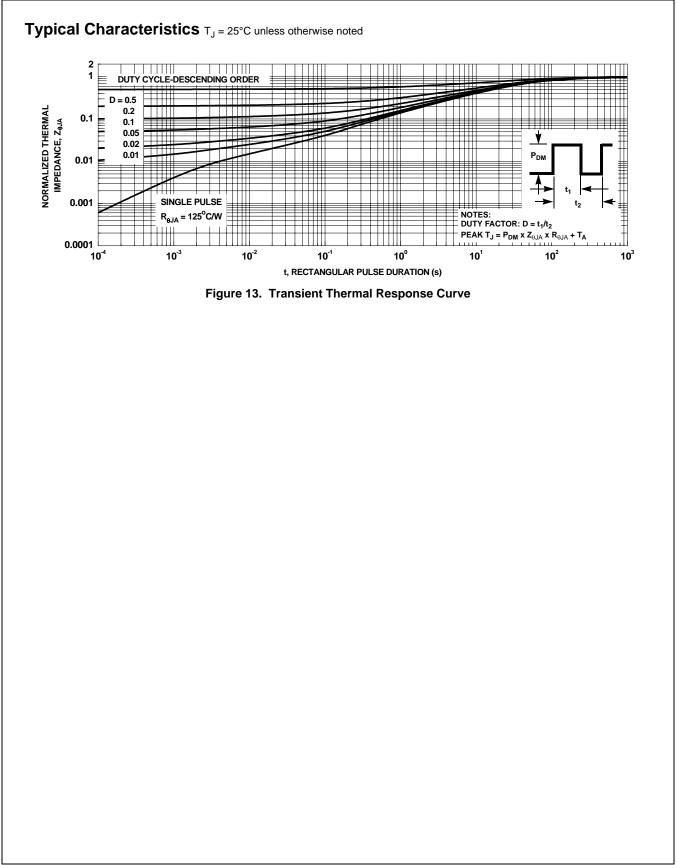
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8680	FDMS8680	Power 56	13"	12mm	3000units

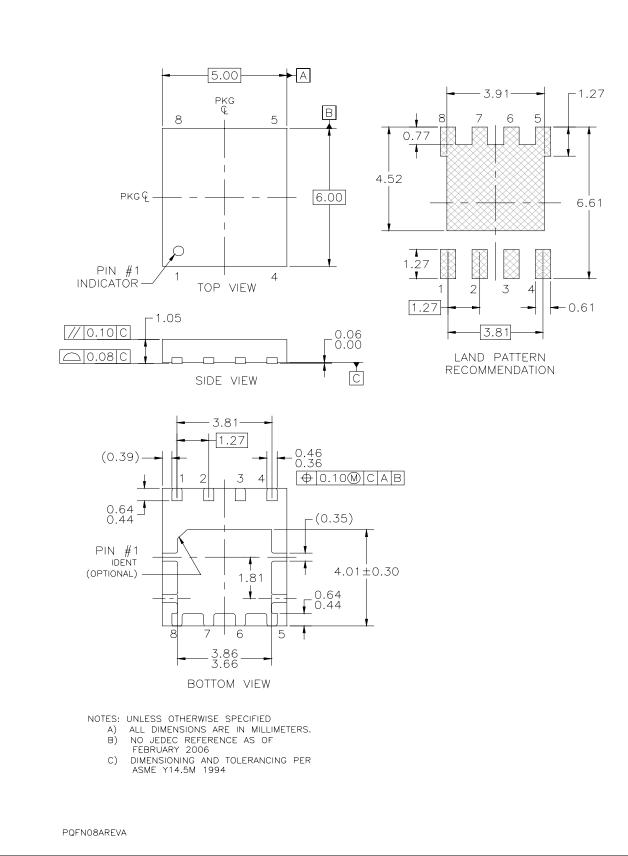
April 2008

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V
∆BV _{DSS}	Breakdown Voltage Temperature		00			
ΔT_{J}	Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		24		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
	cteristics				ł	
		$\lambda = \lambda = 250$	1.0	1.8	3.0	V
V _{GS(th)}	Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.0	3.0	v
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-5.7		mV/°C
		V _{GS} = 10V, I _D = 14A		5.5	7.0	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 11.5A		8.5	11.0	mΩ
		$V_{GS} = 10V, I_D = 14A, T_J = 125^{\circ}C$		8.2	10.5	
9 _{FS}	Forward Transconductance	$V_{DD} = 10V, I_D = 14A$		72		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1195	1590	pF
C _{oss}	Output Capacitance	$-V_{DS} = 15V, V_{GS} = 0V,$		555	740	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		95	145	pF
R _g	Gate Resistance	f = 1MHz		0.8	4.0	Ω
Switching	Characteristics			1		1
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15V, I _D = 14A,		9	18	ns
t _r	Rise Time	$V_{\text{DD}} = 10V, \text{ H}_{\text{D}} = 14\Lambda,$ $-V_{\text{GS}} = 10V, \text{ R}_{\text{GEN}} = 6\Omega$		3	10	ns
t _{d(off)}	Turn-Off Delay Time			21	34	ns
t _f	Fall Time			2	10	ns
Qg	Total Gate Charge	$V_{GS} = 0V$ to 10V $V_{DD} = 15V$		18	26	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $I_D = 14A$		10	14	nC
Q _{gs}	Gate to Source Charge	_		3.2		nC
Q _{gd}	Gate to Drain "Miller" Charge			2.7		nC
Drain-Soເ	arce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 14A$ (Note 2)		0.8	1.2	V
-	Reverse Recovery Time	$L = 1.4$ di/dt = 100 \/		27	44	ns
	Reverse Recovery Charge	$r_{F} = 14A$, al/at = 100A/µS		15	27	nC
t _{rr} Q _{rr} IOTES:	Reverse Recovery Time Reverse Recovery Charge ned with the device mounted on a 1in ² pad 2 oz copper pad	- I _F = 14A, di/dt = 100A/μs	guaranteed b	27 15	44 27	ns nC
	a. 50°C/W when m 1in ² pad of 2 oz		miı	5°C/W when I		


©2008 Fairchild Ser FDMS8680 Rev.C1

©2008 Fairchild Semiconductor Corporation FDMS8680 Rev.C1


www.fairchildsemi.com



©2008 Fairchild Semiconductor Corporation FDMS8680 Rev.C1 4

www.fairchildsemi.com

FDMS8680 N-Channel PowerTrench[®] MOSFET

©2008 Fairchild Semiconductor Corporation FDMS8680 Rev.C1

6

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

PDP-SPM™

ACEx[®] Build it Now[™] CorePLUS[™] CorePOWER[™] CROSSVOLT[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®]

Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]** R

FPS™

Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET[®]** QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT™-8 SuperMOS™

The Power Franchise[®] bwer p franchise TinyBoost™ TinvBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinvWire™ µSerDes™ W UHC® Ultra FRFET™ UniFET™

VCX™

VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 134 www.fairchildsemi.com